# A steel cable lying flat on the floor drags a 20 kg block across a horizontal, frictionless floor. A 100 N force applied to the cable causes the block to reach a speed of 4.2 m/s in a distance of 2.0 m.What is the mass of the cable?

m_cable = 2,676 kg

Explanation:

For this exercise we must look for the acceleration with the kinematic ce relations

v² = v₀² + 2 a x

since the block starts from rest, its initial velocity is vo = 0

a = v² / 2x

a = 4.2² /(2 2.0)

a = 4.41 m / s²

now we can use Newton's second law

Note that the mass that the extreme force has to drag is the mass of the block plus the mass of the cable.

F = (m + m_cable) a

m_cable  = F / a -m

m_cable = 100 / 4.41 - 20

m_cable = 2,676 kg

Unfortunately, the information given does not provide enough data to determine the mass of the steel cable. This is because the force, acceleration, and distance information given only involve the mass of the block, not the cable.

### Explanation:

The question is requesting the mass of the steel cable. However, given the information in the question, we don't actually have enough data to determine this. The application of the force, the acceleration of the block, and the distance it covers are all connected through Newton's second law (F = ma) and the equations of motion, but these only involve the mass of the block, not the mass of the cable. Even if we assumed the cable applies the entire 100 N force to the block, this would only allow us to solve for the acceleration of the block, not the mass of the cable. Therefore, the mass of the steel cable cannot be determined with the information provided in the question.

brainly.com/question/32123193

#SPJ12

## Related Questions

A^^\-> points in the -x direction with a magnitude of 21. What is the y component of A^^\->

Explanation:

Given that,

Vector A points in the -x direction with a magnitude of 21.

Let the x component is making an angle of 60 degrees with negative x axis. The x component of a vector is given by :

A = -42 units

The y component of a vector is given by :

So, the y component of vector A is (-36.37) degrees. Hence, this is the required solution.

As shown in the figure below, Greta walks 30m toward her truck. She notices she forgot hercoffee and returns back to the house. Her total travel time is 240 seconds.
30 m
30 in
What is Greta's average velocity over the 240s period?
m/s
What is Greta's average speed over the 240s period?
m/s

Average velocity: 0 m/s. Average speed: 0.25 m/s. Greta returns to her starting point, so her displacement is 0m.

Greta's average velocity is 0 m/s because she ends up at the same point where she started. Her displacement is 0 meters, and since velocity is displacement divided by time, her average velocity is 0 / 240 = 0 m/s.

Her average speed, on the other hand, is calculated using the formula: Average Speed = TotalDistance / Total Time.

Initially, Greta walks 30 meters away from her truck, and then she returns 30 meters back to her starting point. So, the total distance she covers is 30 + 30 = 60 meters. Her total travel time is 240 seconds.

AverageSpeed = 60 meters / 240 seconds = 0.25 m/s.

In summary, Greta's average velocity is 0 m/s because her net displacement is 0 meters. Her average speed is 0.25 m/s because she covers a total distance of 60 meters in 240 seconds.

brainly.com/question/14726523

#SPJ3

0 | for Velocity

.25 | for speed

Explanation:

Tony brought 9 2/3pitchers of juice to a volleyball game, and the players drank3 7/8pitchers of it. How much juice is left?

Rewrite the amounts as improper fractions:

9 2/3 = 29/3

3 7/8 = 31/8

Rewrite both fractions with a common denominator

29/3 = 232/24

31/8 = 93/24

Now subtract: 232/24 - 93/24 = 139/24

Rewrite as a proper fraction: 5 19/24

Light has wavelength 600 nm in a vacuum. it passes into glass, which has an index of refraction of 1.5. what is the frequency of the light inside the glass

Light has wavelength 600 nm in a vacuum ,the frequency of the light is 2 × Hz.

### What is wavelength?

The separation between such a wave motion's crests and troughs would be known as the wavelength of photons.

### What is frequency ?

The total number of waves that pass a specific location in a predetermined amount of time is known as frequency.

Calculation of frequency

Given data:

wavelength = 600 nm = 600 × m

index of refraction = 1.5.

Frequency can be calculated by using the formula:

v = f × wavelength

f =  wavelength / v

Where, f = Frequency , v is velocity.

put the given data in above equation.

f =  wavelength / v

f = 600 × m / 3 ×

f = 200 × .

f = 2 ×

Therefore, the frequency of the light is 2 × Hz.

To know more about frequency and wavelength

brainly.com/question/5102661

#SPJ3

v = f lambda

in vac ... 3X10^8 = 600x10^-9xf

in glass speed slower, poss 2/3 that of vacuum

Monochromatic coherent light shines through a pair of slits. If the distance between these slits is decreased, which of the following statements are true of the resulting interference pattern?A) The distance between the maxima stays the same.B) The distance between the maxima decreases.
C) The distance between the minima stays the same.
D) The distance between the minima increases.
E) The distance between the maxima increases.

The correct statements are D and E.

Explanation:

The fringe width is given by the following formula as :

Here,

is wavelength of light

D is distance between slit and the screen

d is slit width.

If the between these slits is decreased, the fringe width increases. As a result, the distance between the minima increases and also the distance between the maxima increases.

The surface tension of a liquid is to be measured using a liquid film suspended on a U-shaped wire frame with an 12-cm-long movable side. If the force needed to move the wire is 0.096 N, determine the surface tension of this liquid in air.

σ  = 0.8 N/m

Explanation:

Given that

L = 12 cm

We know that 1 m = 100 cm

L = 0.12 m

The force ,F= 0.096 N

Lets take surface tension = σ

We know that surface tension is given as

Therefore the surface tension σ  will be 0.8 N/m .

σ  = 0.8 N/m