# A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 V. It is used to charge two storage batteries connected in series, each having an emf of 6.00 V and internal resistance of 0.300 V. If the charging current is to be 4.00 A, (a) what additional resistance should be added in series? At what rate does the internal energy increase in (b) the supply, (c) in the batteries, and (d) in the added series resistance? (e) At what rate does the chemical energy increase in the batteries?

## Answers

Answer 1
Answer:

Complete Question

A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 . It is used to charge two storage batteries connected in series, each having an emf of 6.00 V and internal resistance of 0.300 . If the charging current is to be 4.00 A, (a) what additional resistance should be added in series? At what rate does the internal energy increase in (b) the supply, (c) in the batteries, and (d) in the added series resistance? (e) At what rate does the chemical energy increase in the batteries?

Answer:

a

The additional resistance is

b

The rate at which internal energy increase at the supply is

c

The rate at which internal energy increase in the battery  is

d

The rate at which internal energy increase in the added series resistance is

e

the increase rate of the chemically energy in the battery is

Explanation:

From the question we are told that

The  open circuit voltage is

The internal resistance is

The emf of each battery is

The internal resistance of the battery is

The  charging current is

Let assume the the additional resistance to to added to the circuit is

So this implies that

The total resistance in the circuit is

Substituting values

And  the difference in potential in the circuit is

=>

Now according to ohm's law

Substituting values

Making the subject of the formula

So

The  increase rate of   internal energy at the supply is mathematically represented as

Substituting values

The  increase rate of   internal energy at the batteries  is mathematically represented as

Substituting values

The  increase rate of  internal energy at the added  series resistance  is mathematically represented as

Substituting values

Generally the increase rate of the chemically energy in the battery is  mathematically represented as

Substituting values

## Related Questions

A bug flying horizontally at 1.7 m/s collides and sticks to the end of a uniform stick hanging vertically from its other end. After the impact, the stick swings out to a maximum angle of 7.0Â° from the vertical before rotating back. If the mass of the stick is 16 times that of the bug, calculate the length of the stick (in m).

### Answers

Answer:12.11 m

Explanation:

Given

Bug speed =1.7 m/s

Let mass of bug is m

mass of rod 16m

maximum angle turned by rod is 7^{\circ}[/tex]

From Energy conservation

kinetic energy of bug =Gain in potential energy of rod

L=12.11 m

The heating element of a coffeemaker operates at 120 V and carries a current of 4.50 A. Assuming the water absorbs all of the energy converted by the resistor, calculate how long it takes to heat 0.525 kg of water from room temperature (23.0°C) to the boiling point.

### Answers

Answer:

It will take 313.376 sec to raise temperature to boiling point

Explanation:

We have given that potential difference V = 120 Volt

Current i = 4.50 A

So resistance

Heat flow in resistor will be equal to

It is given that this heat is used for boiling the water

Mass of the water = 0.525 kg = 525 gram

Specific heat of water 4.186 J/gram/°C

Initial temperature is given as 23°C

Boiling temperature of water = 100°C

So change in temperature = 100-23 = 77°C

Heat required to raise the temperature of water

So

t = 313.376 sec

So it will take 313.376 sec to raise temperature to boiling point

Answer:

Explanation:

Voltage, V = 120 V

Current, i = 4.5 A

mass of water, m = 0.525 kg

initial temperature of water, T1 = 23°C

Final temperature of water, T2 = 100 °C

specific heat of water, c = 4.18 x 1000 J/kg °c

let the time taken is t.

Heat given by the heater = heat gain by the water

V x i x t = m x c x (T2 - T1)

120 x 4.5 x t = 0.525 x 4.18 x 1000 x (100 - 23)

540 t = 47701.5

t = 88.34 s

A 0.060 ???????? tennis ball, moving with a speed of 5.28 m/???? , has a head-on collision with a 0.080 ???????? ball initially moving in the same direction at a speed of 3.00 m/ ???? . Assume that the collision is perfectly elastic. Determine the velocity (speed and direction) of both the balls after the collision.

### Answers

Explanation:

It is given that,

Mass of the tennis ball,

Initial speed of tennis ball,

Mass of ball,

Initial speed of ball,

In case of elastic collision, the momentum remains conserved. The momentum equation is given by :

are final speed of tennis ball and the ball respectively.

..............(1)

We know that the coefficient of restitution is equal to 1. It is given by :

.................(2)

On solving equation (1) and (2) to find the values of velocities after collision.

So, the speed of both balls are 5.28 m/s and 3 m/s respectively. Hence, this is the required solution.

A rectangular loop (area = 0.15 m2) turns in a uniform magnetic field, B = 0.18 T. When the angle between the field and the normal to the plane of the loop is π/2 rad and increasing at 0.75 rad/s, what emf is induced in the loop?

### Answers

Answer:

Emf induced in the loop is 0.02V

Explanation:

To get the emf of induced loop, we have to use faraday's law

ε = - dΦ/dt

To get the flux, we use;

Φ = BA cos(θ)

B = The uniform magnetic field

A = Area of rectangular loop

θ = angle between magnetic field and normal to the plane of loop

substitute the flux equation (Φ) into the faraday's equation

we have ε = - d(BA cos(θ)) / dt

ε = BA sinθ dθ/dt

from the question;B = 0.18T, A=0.15m2, θ = π/2 ,dθ/dt = 0.75rad/s

Our equation will now look like this;

ε = (0.18T) (0.15m2) (sin(π/2)) (0.75rad/s)

ε = 0.02V

A force of 240.0 N causes an object to accelerate at 3.2 m/s2. What is the mass of the object?

### Answers

the mass would be 75kg

Dogs can hear higher-pitched whistles that humans do. How do you
think the sound frequencies that dogs can
hear compare to the frequencies that humans
can hear?

### Answers

Dogs can hear sounds at higher frequencies than humans. The range of sound frequencies that dogs can hear is approximately 40 Hz to 60,000 Hz, while the range for humans is 20 Hz to 20,000 Hz. This means that dogs can hear ultrasonic sounds that are beyond the range of human hearing.

### What is sound about?

In terms of physics, sound is a vibration that travels through a transmission medium like a gas, liquid, or solid as an acoustic wave.

Sound is the reception of these waves and the brain's perception of them in terms of human physiology and psychology. Dogs have the ability to hear ultrasonic sounds that are audible only to them.

Learn more about sound on:

brainly.com/question/16093793

#SPJ1