An inflatable structure has the shape of a half-circular cylinder with hemispherical ends. The structure has a radius of 40 ft when inflated to a pressure of 0.60 psi. A longitudinal seam runs the entire length of the structure. The seam fails in tension when the load is 600 pounds per inch of seam. What is the factor of safety with respect to longitudinal seam failure?


Answer 1

Find the given attachment

Related Questions

Calculate the "exact" alkalinity of the water in Problem 3-2 if the pH is 9.43.Calculate the "approximate" alkalinity (in mg/L as CaCO3 ) of a water containing 120 mg/L of bicarbonate ion and 15 mg/L of carbonate ion.
Compute the electrical resistivity of a cylindrical silicon specimen 7.0 mm (0.28 in.) diameter and 57 mm (2.25 in.) in length in which a current of 0.25 A passes in an axial direction. A voltage of 24 V is measured across two probes that are separated by 45 mm (1.75 in.).
B. Suppose R1 is a fuse which burns out due to a sudden surge of current, thus, it essentially becomes an open switch. How do the currents change after this?
A certain printer requires that all of the following conditions be satisfied before it will send a HIGH to la microprocessor acknowledging that it is ready to print: 1. The printer's electronic circuits must be energized. 2. Paper must be loaded and ready to advance. 3. The printer must be "on line" with the microprocessor. As each of the above conditions is satisfied, a HIGH is generated and applied to a 3-input logic gate. When all three conditions are met, the logic gate produces a HIGH output indicating readiness to print. The basic logic gate used in this circuit would be an): A) NOR gate. B) NOT gate. C) OR gate. D) AND gate.
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer coefficient of 220 W/m^2•K. The 10-cm thick brass plate (rho = 8530 kg/m^3, cp = 380 J/kg•K, k = 110 W/m•K, and α = 33.9×10^–6 m^2/s) has a uniform initial temperature of 900°C, and the bottom surface of the plate is insulated. Required:Determine the temperature at the center plane of the brass plate after 3 minutes of cooling.

Use Euler’s Method: ????????????????=???? ????????????????=−????????−????3+????cos(????) ????(0)=1.0 ????(0)=1.0 ????=0.4 ????=20.0 ℎ=0.01 ????=10000 ▪ Write the data (y1, y2) to a file named "LASTNAME_Prob1.dat" Example: If your name is John Doe – file name would be "DOE_Prob1.dat" ▪ Plot the result with lines using GNUPLOT (Hint: see lecture 08) ▪ Submit full code (copy and paste). Plot must be on a separate page. ▪ Run the code again and plot the result for: ????=0.1 ????=11.0



Too many question marks


What is the De Broglie wavelength of an electron under 150 V acceleration?



0.1 nm


Potential difference of the electron = 150 V

Mass of electron m=9.1* 10^(-31)kg

Charge on electron 1.6* 10^(-19)C

Plank's constant h=6.67* 10^(-34)

If the velocity of the electron is v

Then according to energy conservation eV =(1)/(2)mv^2

v=\sqrt{(2eV)/(m)}=\sqrt{(2* 1.6* 10^(-`19)* 150)/(9.1* 10^(-31))}=7.2627* 10^(6)m/sec

According to De Broglie \lambda =(h)/(mv)=(6.67* 10^(-34))/(9.1* 10^(-31)* 7.2627* 10^(6))=0.1nm

Which property of real numbers is shown below?3 + ((-5) + 6) = (3 + (-5)) + 6
commutative property of addition
identity property of multiplication
associative property of addition
commutative property of multiplication


The property of realnumbers is shown below is associative property of addition. The correct option is C.

What is associative property of addition?

According to the associativeproperty of addition, you can arrange the addends in several ways without changing the result.

According to the commutative property of addition, you can rearrange the addends without altering the result.

When more than two numbers are added together or multiplied, the outcome is always the same, regardless of how the numbers are arranged.

This is known as the associativeproperty. As an illustration, 2 (7 6) = (2 7) 6. 2 + (7 + 6) = (2 + 7) + 6.

Thus, the correct option is C.

For more details regarding associative property, visit:





Karen just checked her bank balance and the balance was 1111.11. She is kind of freaking out and saved the receipt, thinking that it must mean something. Karen is probably just suffering from



chronic stoner syndrome


"the universe just sends us messages sometimes mannnn, you just have to be ready to listen to them" lol

Clothing made of several thin layers of fabric with trapped air in between, often called ski clothing, is commonly used in cold climates because it is light, fashionable, and a very effective thermal insulator. So, it is no surprise that such clothing has largely replaced thick and heavy old-fashioned coats. Consider a jacket made up of six layers of 0.1 mm thick synthetic fabric (k = 0.026W/m.K) with 1.2 mm thick air space (k = 0.026 W/m.K) between the fabric layers. Assuming the inner surface temperature of the jacket to be 25˚C and the surface area to be 1.25 m2 , determine the heat loss through the jacket when the temperature of the outdoors is -5˚C and the heat transfer co-efficient of outer surface is 25 W/m2 .K. What would be the thickness of a wool fabric (k = 0.035W/m.K) if the person has to achieve the same level of thermal comfort wearing a thick wool coat instead of a jacket. (30 points)






Heat transfer consists of the propagation of energy in the form of heat in different ways, these can be convection if it is through a fluid, radiation through electromagnetic waves and conduction through solid solids.

To solve any problem related to heat transfer, the general equation is used

Q = delta / R


Q = heat

Delta = the temperature difference

R = is the thermal resistance by conduction, convection and radiation

to solve this problem we propose the previous equation

Q = delta / R

later we find R

R=[tex]r=(6L1)/(AK1) +(5L2)/(AK2)+(1)/(Ah)

R=(6(0.0001))/((1.25)(0.026)) +(5(0.012))/((1.25)(0.026))+(1)/((25)(1.25)) =0.235 K/w


part b

we use the same ecuation with Q=127.66

Q = delta / R

ΔR=(L)/(KA) +(1)/(hA) \nR=(L)/((0.035)(1.25)) +(1)/((25)(1.25))\n R=22.85L+0.032\nQ=(T1-T2)/R\n\n127.66=(25-(-5))/(22.85L+0.032)\nsolving for L\nL=9.2mm

A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic field of the stator is rotating



The answer is below


A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic field of the stator is rotating. 2- the speed of the rotor when the slip is 0.05. 3- the frequency of the rotor currents when the slip is 0.04. 4- the frequency of the rotor currents at standstill.

Given that:

number of poles (p) = 4, frequency (f) = 60 Hz

1) The synchronous speed of the motor is the speed at which the magnetic field of the stator is rotating. It is given as:

n_s=(120f)/(p)=(120*60)/(4)=1800\ rpm

2) The slip (s) = 0.05

The speed of the motor (n) is the speed of the rotor, it is given as:

n=n_s-sn_s\n\nn=1800-0.05(1800)\n\nn=1800-90\n\nn=1710\ rpm

3) s = 0.04

The rotor frequency is the product of the supply frequency and slip it is given as:

f_r=sf\n\nf_r=0.04*60\n\nf_r=2.4\ Hz

4) At standstill, the motor speed is zero hence the slip = 1:

s=(n_s-n)/(n_s)\n \nn=0\n\ns=(n_s-0)/(n_s)\n\ns=1

The rotor frequency is the product of the supply frequency and slip it is given as:

f_r=sf\n\nf_r=1*60\n\nf_r=60\ Hz