Answer:

Answer:

A) m2 = 98.71g

B) v_f2 = 1.86 m/s

Explanation:

We are given;

Mass of cart; m1 = 340g

Initial speed; v_i1 = 1.2 m/s

Final speed; v_f1 = 0.66 m/s

A)Since the collision is elastic, we can simply apply the conservation of momentum to get;

m1•(v_i1) = m1•(v_f1) + m2•(v_f2) - - - - - (eq1)

From conservation of kinetic energy, we have;

(1/2)m1•(v_i1)² = (1/2)m1•(v_f1)² + (1/2)m2•(v_f2)² - - - - eq(2)

Let's make v_f2 the subject in eq 2;

Thus,

v_f2 = √([m1•(v_i1)² - m1•(v_f1)²]/m2)

v_f2 = √([m1((v_i1)² - (v_f1)²)]/m2)

Let's put this for v_f2 in eq1 to obtain;

m2 = {m1((v_i1) - (v_f1))}/√([m1((v_i1)² - (v_f1)²)]/m2)

Let's square both sides to give;

(m2)² = {m1•m2((v_i1) - (v_f1))²}/([(v_i1)² - (v_f1)²]

This gives;

m2 = {m1((v_i1) - (v_f1))²}/([(v_i1)² - (v_f1)²]

Plugging in the relevant values to get;

m2 = {340((1.2) - (0.66))²}/([(1.2)² - (0.66)²]

m2 = 98.71g

B) from equation 1, we have;

m1•(v_i1) = m1•(v_f1) + m2•(v_f2)

Making v_f2 the subject, we have;

v_f2 = m1[(v_i1) - (v_f1)]/m2

Plugging in the relevant values to get;

v_f2 = 340[(1.2) - (0.66)]/98.71

v_f2 = 1.86 m/s

Answer:
### Final answer:

### Explanation:

### Learn more about conservation of momentum here:

To determine the mass of the second cart and its speed after impact, we can use the principle of conservation of momentum. The initial momentum of the first cart is equal to its final momentum plus the momentum of the second cart. After calculating the mass of the second cart, we can use the conservation of momentum again to find its speed by equating the final** velocity** of the combined carts to the initial velocity of the first cart.

To determine the mass of the second cart, we can use the principle of conservation of momentum. The initial momentum of the first cart, with a mass of 340 g and an initial velocity of 1.2 m/s, is equal to its final momentum plus the momentum of the second cart. Using this equation, we can solve for the mass of the second cart.

After calculating the mass of the second cart, we can use the conservation of **momentum** again to find its speed after the impact. Since the two carts stick together after the collision, the final velocity of the combined carts is equal to the initial velocity of the first cart. Using this equation, we can solve for the speed of the second cart.

#SPJ11

Classical mechanics is an extremely well tested model. Hundreds of years worth of experiments, as well as most feats of engineering, have verified its validity. If special relativity gave very different predictions than classical physics in everyday situations, it would be directly contradicted by this mountain of evidence. In this problem, you will see how some of the usual laws of classical mechanics can be obtained from special relativity by simply assuming that the speeds involved are small compared to the speed of light.Two of the most surprising results of special relativity are time dilation and length contraction, namely, that measured intervals in time and space are not absolute quantities but instead appear differently to different observers. The equations for time dilation and length contraction can be written t=?t0 and l=l0/?, where?=11?u2c2?.Part AFind the first two terms of the binomial expansion for ?.Express your answer in terms of u and c.Hints? = 1+12(uc)2 … SubmitMy AnswersGive UpCorrectYou can see that ??1 if u?c, as is the case in most situations. If you set ?=1 in the equations for time dilation and length contraction you recover the equations of classical physics, which state essentially that there is no time dilation or length contraction. Therefore, we don't see any appreciable length contraction or time dilation in everyday life.Part BConsider a case involving a speed that is fast compared to those encountered in our everyday life: a spy plane moving at 1500m/s. Find the deviation from classical physics (??1) that relativity predicts at this speed. Use only the first two terms of the binomial expansion, as your calculator may not be able to handle the necessary number of digits otherwise.Express your answer to four significant figures.??1 = 1.250×10?11SubmitMy AnswersGive UpCorrectIf you lived for 70 years in such a spy plane moving at 1500m/s, this would amount to about 28ms of cumulative time difference between you and people who lived at rest relative to the earth when you finally landed. Thus, it is not surprising that relativistic effects are not observed in everyday life, or even at the fringes of everyday life. By using atomic clocks, which can measure time accurately to one part in 1013 or better, the time dilation at the normal speed for an airliner has been verified.Part CNow, consider the relativistic velocity addition formula:speed=v+u1+vuc2.If v=u=0.01c=1% of c, what is the relativistic sum of the two speeds?Express your answer as a percentage of the speed of light to five significant figures.

An ideal gas is at a temperature of 320 K. What is the average translational kinetic energy of one of its molecules

What is effort arm don't say the answer of gogle

Only one of three balls A, B, and C carries a net charge q. The balls are made from conducting material and are identical. One of the uncharged balls can become charged by touching it to the charged ball and then separating the two. This process of touching one ball to another and then separating the two balls can be repeated over and over again, with the result that the three balls can take on a variety of charges. Which one of the following distribution of charges could not possibly be achieved in this fashion, even if the process were repeated an infinite number of times?Why the answer is qA = 1/2q, qB=3/8q, qC=1/4q. Explain please.

Tony brought 9 2/3pitchers of juice to a volleyball game, and the players drank3 7/8pitchers of it. How much juice is left?

An ideal gas is at a temperature of 320 K. What is the average translational kinetic energy of one of its molecules

What is effort arm don't say the answer of gogle

Only one of three balls A, B, and C carries a net charge q. The balls are made from conducting material and are identical. One of the uncharged balls can become charged by touching it to the charged ball and then separating the two. This process of touching one ball to another and then separating the two balls can be repeated over and over again, with the result that the three balls can take on a variety of charges. Which one of the following distribution of charges could not possibly be achieved in this fashion, even if the process were repeated an infinite number of times?Why the answer is qA = 1/2q, qB=3/8q, qC=1/4q. Explain please.

Tony brought 9 2/3pitchers of juice to a volleyball game, and the players drank3 7/8pitchers of it. How much juice is left?

**Explanation:**

It is given that,

Distance, r = 3.5 m

Electric field due to an infinite wall of charges, E = 125 N/C

**We need to find the electric field 1.5 meters from the wall, r' = 1.5 m. Let it is equal to E'. For an infinite wall of charge the electric field is given by :**

It is clear that the electric field is inversely proportional to the distance. So,

**E' = 291.67 N/C**

**So, the magnitude of the electric field 1.5 meters from the wall is 291.67 N/C. Hence, this is the required solution.**

**Answer:22.76 m/s**

**Explanation:**

Given

Train length(L)=75 m

Front of train after travelling 125 m is 18 m/s

Time taken by the front of train to cover 125 m

Speed of the last part of train when it passes the worker i.e. front of train has to travel has to travel a distance of 125+75=200 m

**Answer:**

Speed of the wind is 48.989 mph

**Explanation:**

We have given each trip is of 200 miles

So total distance = 200 +200 = 400 miles

Speed of the airplane = 120 mph

Let the speed of the wind = x mph

So the speed of the airplane with wind = 120+x

So time taken by airplane with wind =

Speed of the airplane against the wind = 120 - x

So time taken by the airplane against the wind

Total time is given as t= 4 hour

So

x = 48.989 mph

**Answer:**

**Explanation:**

Type Distance Rate Time

Headwind 200 120-r 200/120-r

Tailwind 200 120 - r 200/120 - r

We know the times add to 4, so we write the equation:

200/120−r + 200/120 + r = 4

We multiply both sides by the LCD and simplify to get:

(120−r)(120+r) ((200/120 -r ) + 200/120+r) = 4(120 -r) (120 +r)

200(120−r)+200(120+r)=4(120−r)(120+r)

Factor the 200 and simplify inside the parentheses to find:

200(120−r+120+r)=4(1202−r2)

200(240)=4(1202−r2)

200(60)=120^2−r^2

12,000=14,400−r^2

−2,400= −r^2

49 ≈ r

The speed of the wind is 49mph.

The **linear speed **of the **ball **for the circular motion is determined as** 12 m/s.**

The given parameters;

*mass of each ball, m = 450 g = 0.45 kg**length of the rod, L = 0.2 m**radius of the rod, r = 0.1 m**angular speed of the ball, ω = 120 rad/s*

The **linear speed** of the ball is calculated as follows;

v = ωr

where;

*ω is the angular speed of the ball**r is the radius of circular motion of the ball*

The **linear speed **of the ball is calculated as follows;

v = ωr

v = 120 x 0.1

v = 12 m/s

Thus, the **linear speed **of the **ball **for the circular motion is determined as** 12 m/s.**

Learn more here:brainly.com/question/14404053

**Answer:**

**The speed of ball is 12 **

**Explanation:**

Given:

Mass of ball kg

Radius of rotation m

Angular speed

Here barbell spins around a pivot at its center and barbell consists of two small balls,

**From the formula of speed in terms of angular speed,**

Where speed of ball

**Therefore, the speed of ball is 12 **

(b) Find the magnitude of force F~2 that is acting on the block

(c) Find the magnitude of force F~ 2 if the block accelerates with a magnitude of a = 2.5 m/s2 along the direction of F~ 2 .

**Answer:**

Normal force=7.48 N

**Explanation:**

N+F~1 sinθ-mg=0

=>N=1.5*9.8-12 sin37◦

=>N=14.7-7.22=7.48 N

**Answer:**

V = 575.6 Volts

**Explanation:**

As we know that surface area of the equi-potential surface is given as

so we will say

Now the potential due to a point charge is given as