The energy provided each hour by heat to the turbine in an electric power plant is 9.0×10^12 J. If 5.4 × 10^12 J of energy is exhausted each hour from the engine as heat, what is the efficiency of this heat engine?

Answers

Answer 1
Answer:

Answer:

60 %

Explanation:

Efficiency is defined as the ratio of output power  to the input power.

Input energy each hour = 9 x 10^12 J

Output energy each hour = 5.4 x 10^12 J

Efficiency = Output energy per hour / input energy per hour

Efficiency = (5.4 x 10^12) / ( 9 x 10^12) = 5.4 / 9 = 0.6

Efficiency in percentage form = 0.6 x 100 = 60 %

Answer 2
Answer:

Final answer:

The efficiency of a heat engine is calculated using the formula (Energy Input - Energy Output) / Energy Input. Given the figures, the efficiency of the engine is 40%, indicating that 40% of the input energy is converted into work.

Explanation:

The efficiency of a heat engine is determined by the ratio of work output to energy input. In the given scenario, the turbine in an electric power plant is supplied with 9.0 x 10^12 joules of energy, and 5.4 x 10^12 joules of energy is expelled as heat per hour. We can calculate the efficiency using the equation:

Efficiency = (Energy Input - Energy Output) / Energy Input

By substituting the given values, Efficiency = (9.0 x 10^12 J - 5.4 x 10^12 J) / 9.0 x 10^12 J = 0.4 or 40%

This means the heat engine of the power plant has a 40% efficiency, meaning 40% of the energy input is converted into work while 60% is discarded as waste heat.

Learn more about Thermal Efficiency here:

brainly.com/question/13039990

#SPJ3


Related Questions

Two cylinders with the same mass density rhoC = 713 kg / m3 are floating in a container of water (with mass density rhoW = 1025 kg / m3). Cylinder #1 has a length of L1 = 20 cm and radius r1 = 5 cm. Cylinder #2 has a length of L2 = 10 cm and radius r2 = 10 cm. If h1 and h2 are the heights that these cylinders stick out above the water, what is the ratio of the height of Cylinder #2 above the water to the height of Cylinder #1 above the water (h2 / h1)? h2 / h1 =
Alex throws a 0.15-kg rubber ball down onto the floor. The ball’s speed just before impact is 6.5 m/s, and just after is 3.5 m/s. If the ball is in contact with the floor for 0.025 s, what is the magnitude of the average force applied by the floor on the ball?
Which if, any, of these statements are true? (More than one may be true.) Assume the batteries are ideal. Check all that apply. A battery supplies the energy to a circuit. A battery is a source of potential difference; the potential difference between the terminals of the battery is always the same. A battery is a source of current; the current leaving the battery is always the same.
In the study of​ sound, one version of the law of tensions is:f1= f2 √ (F1/F2)If f1= 300, F2= 60, and f2=260, find f1 to the nearest unit.
What is the potential energy of a spring that is compressed 0.65 m by a 25 kg block if the spring constant is 95 N/m?A. 1.6JB. 7.9JC. 15JD. 20J

Which of the following describes the net force acting on an object?The sum of all forces acting on an object
The gravitational force minus any contact forces acting on an object
The difference between the normal force and the gravitational force acting on an object
The sum of all the forces acting on an object in the same direction

Answers

The sum of all forces acting on an object in the same direction is described for the net force acting on an object.

What is a Net force?

  • When the forces are acting in the same direction of movement of the object it can be said as sum of the two individual forces will be equal to the "Net Force" .
  • The net force is the combined force of all individual forces acting on an object.
  • If the object with the forces in the opposite direction, then the net force will not be equal to the sum of the forces.

Example : If two forces (2 kids pushing in the same direction to move the object big box) act on an object (big box) in the same direction, then the net force is equal to the sum of the two forces. If the kids pushed in the opposite direction, the net force will not occur.

Hence, Option D is the correct answer.

Learn more about Net force,

brainly.com/question/6000441

#SPJ6

Answer:

The sum of all the forces acting on an object in the same direction.

Two cars, a Porsche Boxster convertible and a Toyota Scion xB, are traveling at constant speeds in the same direction. Suppose, instead, that the Boxster is initially 170 m behind the Scion. The speed of the Boxster is 24.4 m/s and the speed of the Scion is 18.6 m/s. How much time does it take for the Boxster to catch the Scion

Answers

Answer:

It will take 29.31 seconds for the Boxster to catch the Scion

Explanation:

Given the data in the question;

lets say Toyota Scion xB is car A and Porsche Boxster convertible is B and Toyota Scion xB is car A

the distance travelled by car A is

x = V_(A) × t

where  V_(A) is the speed of the car and t is time

the distance travelled by car B before reaching car A will be;

x + x₀ = V_(B) × t

Now lets replace x by V_(A) × t

so

(V_(A) × t) + x₀ = V_(B) × t

x₀ = (V_(B) × t) - (V_(A) × t)

x₀ = t (V_(B) - V_(A))

t = x₀ /  (V_(B) - V_(A))

so we substitute

t = 170 m  /  (24.4 - 18.6)  

t = 170 / 5.8

t = 29.31 s

Therefore; it will take 29.31 s for the Boxster to catch the Scion

Overnight a thin layer of ice forms on the surface of a 40-ft-wide river that is essentially of rectangular cross-sectional shape. Under these conditions, the flow depth is 3 ft. During the following day the sun melts the ice cover. Determine the new depth if the flowrate remains the same and the surface roughness of the ice is essentially the same as that for the bottom and sides of the river.

Answers

Answer:

the new depth is 2.3 ft

Explanation:

the solution is in the attached Word file

3. A particle of charge +7.5 µC is released from rest at the point x = 60 cm on an x-axis. The particle begins to move due to the presence of a charge ???? that remains fixed at the origin. What is the kinetic energy of the particle at the instant it has moved 40 cm if a) ???? = +20 µC and b) ???? = −20 µC?

Answers

Answer:

HSBC keen vs kg get it yyyyyuuy

Explanation:

hgccccxfcffgbbbbbbbbbbghhyhhhgdghcjyddhhyfdghhhfdgbxbbndgnncvbhcxgnjffccggshgdggjhddh

nnnbvvvvvggfxrugdfutdfjhyfggigftffghhjjhhjyhrdffddfvvvvvvvvvvvbbbbbbbbbvvcxccghhyhhhjjjhjnnnnnnnnnnnnnbhbfgjgfhhccccccvvjjfdbngxvncnccbnxcvbchvxxghfdgvvhhihbvhbbhhvxcgbbbcxzxvbjhcxvvbnnxvnn

Nitrogen makes up about what percent of a human's body weight?

Answers

Answer:

the answer is 3.3 %

Explanation:

An early model of the atom, proposed by Rutherford after his discovery of the atomic nucleus, had a positive point charge +Ze (the nucleus) at the center of a sphere of radius R with uniformly distributed negative charge −Ze. Z is the atomic number, the number of protons in the nucleus and the number of electrons in the negative sphere. Show that the electric field inside this atom is : Ein=Ze4πϵ0(1r^2−rR^3). b. What is the electric field at the surface of the atom? Is this the expected value? Explain.c. A uranium atom has Z = 92 and R = 0.10 nm. What is the electric field at r = R/2?

Answers

Answer:

Part a)

E = (Ze)/(4\pi\epsilon_0)((1)/(r^2) - (r)/(R^3))

Part b)

E = 0

Yes it is the expected value of electric field at the surface of an atom

Part c)

E = 4.64 * 10^(13) N/C

Explanation:

Since negative charge of electrons in uniformly distributed in the atom while positive charge is concentrated at the nucleus

So the electric field due to positive charge of the nucleus is given as

E = (kq)/(r^2)

E_1 = (Ze)/(4\pi \epsilon_0 r^2)

now charge due to electrons inside a radius "r" is given as

q = (-Ze r^3)/(R^3)

now we will have electric field given as

E_2 = ((-Zer^3)/(R^3))}{4\pi\epsilon_0 r^2}

now net electric field is given as

E = E_1 + E_2

E = (Ze)/(4\pi \epsilon_0 r^2) - (Zer)/(4\pi \epsilon_0 R^3)

E = (Ze)/(4\pi\epsilon_0)((1)/(r^2) - (r)/(R^3))

Part b)

At the surface of an atom

r = R

E = 0

Yes it is the expected value of electric field at the surface of an atom

Part c)

If Z = 92

R = 0.10 nm

r = (R)/(2)

so we will have

E = 92(1.6 * 10^(-19)) * (9 * 10^9)((4)/(R^2) - (1)/(2R^2))

E = (4.64 * 10^(-7))/((0.10 * 10^(-9))^2)

E = 4.64 * 10^(13) N/C